星载云--气溶胶激光雷达光机系统结构及研究进展

李 路1,2,3,4,谢晨波1,2,3,庄 鹏1,2,3,邢昆明1,2,3,方志远1,2,3,储玉飞1,2,3,邵甲第1,2,3,王邦新1,2,3*

(1. 中国科学院合肥物质科学研究院 安徽光学精密机械研究所 中国科学院 大气光学重点实验室,安徽 合肥 230031;

2. 中国科学技术大学研究生院科学岛分院,安徽合肥 230026;

3. 先进激光技术安徽省实验室, 安徽 合肥 230037;

4. 皖西学院 机械与车辆工程学院, 安徽 六安 237012)

摘要:气溶胶辐射强迫效应主要通过气溶胶与辐射相互作用 (aerosol-radiation interaction, ARI) 和 气溶胶与云相互作用 (aerosol-cloud interaction, ACI) 两种途径来影响地球辐射收支平衡, 联合国气候 变化政府间专家委员会 (Intergovernmental Panel on Climate Change, IPCC) 在第五次报告指出, 气溶胶 与云的相互作用是最主要的不确定性辐射强迫因子之一。在云-气溶胶全球探测领域中, 星载云-气溶 胶遥感雷达的探测能力与发展方向对研究者们研究全球云-气溶胶分布特点越来越重要。首先对星载 云-气溶胶遥感雷达技术的应用现状进行了分析, 并针对典型星载云-气溶胶激光雷达 (激光雷达空间 技术实验 LITE、正交偏振云-气溶胶激光雷达 CALIPSO、云-气溶胶传输系统 CATS、大气激光雷达 ATLID) 的探测任务、光机系统参数、结构及材料等技术特点进行了详细的分析研究; 其次从工作机制、 光机系统结构、应用材料和探测能力等方面对各星载云-气溶胶激光雷达系统特点进行了对比, 提出星 载云-气溶胶激光雷达光机系统结构设计特点与方法; 最后分析了当前星载云-气溶胶激光雷达系统技术特点及发展方向, 为我国发展星载云-气溶胶激光雷达提供技术方向及发展建议。 关键词:地球辐射;星载云-气溶胶激光雷达;遥感技术;光机结构

中图分类号: TN958.98 文献标志码: A **DOI**: 10.3788/IRLA20190501

Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol

Li Lu^{1,2,3,4}, Xie Chenbo^{1,2,3}, Zhuang Peng^{1,2,3}, Xing Kunming^{1,2,3}, Fang Zhiyuan^{1,2,3}, Chu Yufei^{1,2,3}, Shao Jiadi^{1,2,3}, Wang Bangxin^{1,2,3*}

 Key Laboratory of Atmospheric Optics, Anhui institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;

2. Science Island Branch of Graduate, University of Science and Technology of China, Hefei 230026, China;

3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China;

4. Faculty of Mechanical and Automotive Engineer, West Anhui University, Liu'an 237012, China)

收稿日期:2019-12-18; 修订日期:2020-01-20

基金项目:民用航天"十三五"技术预先研究项目 (D040103); 中国科学院合肥物质科学研究院"十三五"规划重点支持项目 (KP-2019-05); 安徽省 2017 年度高层次科技人才团队项目 (010567900); 中国科学院战略性先导科技专项 (XDA17040524)
作者简介:李路 (1987-), 男,博士生,主要从事激光雷达技术方面的研究。Email: lilu201205@163.com
导师简介:谢晨波 (1976-), 男,研究员,主要从事激光雷达大气遥感和环境监测方面的研究。Email: cbxie@aiofm.ac.cn
通讯作者:王邦新 (1979-) 男,助理研究员,博士,主要从事激光雷达技术方面的研究。Email: bxwang@aiofm.ac.cn

第8期

Abstract: The aerosol radiative forcing effect mainly influences the balance of the Earth's radiation through two pathways, namely aerosol-radiation interaction (ARI) and aerosol-cloud interaction (ACI). However, uncertainty in ACI is one of the most important uncertainties in the Earth's radiation factor in the IPCC AR5 report. In the field of aerosol-cloud global detection, the detection capability and development direction of space-borne lidar for cloud-aerosol remote sensing plays an very important role to study the global aerosol-cloud distribution characteristics. Therefore, the application status of space-borne lidar for cloud-aerosol remote sensing was analyzed firstly, and the technical characteristics about the detection task, opto-mechanical system parameters, structure and materials of typical space-borne lidar for aerosol-cloud (LITE、 CALIPSO、 CATS and ATLID) were focused on. Secondly, the characteristics of each space-borne lidar for aerosol-cloud were compared and analyzed from the aspects of working mechanism, opto-mechanical system structure, applied materials and detection capabilities. The design features and methods of opto-mechanical system of space-borne lidar for aerosol-cloud were proposed. Finally, the technical characteristics and development direction of the current space-borne lidar for aerosol-cloud were proposed. Finally, the technical characteristics and development direction of the current space-borne lidar for aerosol-cloud were proposed. Finally, the technical characteristics and development direction of the current space-borne lidar for aerosol-cloud were analyzed. The technical direction and development suggestions for the development of space-borne lidar for cloud-aerosol were proposed in China.

Key words: Earth's radiation; space-borne lidar for cloud-aerosol; remote sensing technology; optomechanical structure

0 引 言

云-气溶胶在地球大气系统中发挥着非常重要的 作用,因为它们反射和吸收太阳辐射,从而影响着地 球辐射收支平衡。当太阳辐射进入大气层顶时,大约 30%被云,气溶胶和地球表面反射回太空,近20%被 地球大气本身吸收,大约50%到达地球表面,被地表 吸收升温后,又以长波辐射的方式释放出能量,一部 分通过大气折射返回太空,一部分则被大气本身吸 收,反射回地表,其中气溶胶辐射强迫效应主要通过 气溶胶与辐射相互作用和气溶胶与云相互作用来影 响地球大气系统;云辐射效应主要取决于云粒子的相 态、谱分布、云厚及云高等云参数^[1-3]。联合国气候变 化政府间专家委员会(Intergovernmental Panel on Climate Change, IPCC) 第五次报告指出^[4],气溶胶是最大的不 确定性辐射强迫因子之一,其中气溶胶与云的相互作 用是所包括不确定性最高的辐射强迫因子之一。

可见,获取准确的全球云-气溶胶信息对气候具 有十分重要的意义。科学家们探测云-气溶胶星载遥 感技术主要为被动遥感技术和主动遥感技术,其中星 载被动遥感技术主要包括 AVHRR^[5](Advanced Very High Resolution Radiometer)、TOMS^[6](Total Ozone Mapping Spectrometer)、OMI^[7](Ozone Monitoring Instrument)、MODIS^[8](MODerate resolution Imaging Spectroradiometer)、MISR^[9](Multi-angle Imaging Spectro Radiometer)、POLDER^[10](POLarization and Directionality of Earth's Reflectances)等星载仪器探测云-气溶胶信 息。这些被动遥感探测技术可获得整层气溶胶的光 学厚度、粒径分布,不能有效地获得气溶胶的垂直分 布;对云的探测反演可获得云的水平分布和运动、云 顶部粒径分布、云顶高度等特性,但对云高探测存在 很大不确定性,难以获得云的垂直结构;主动遥感技 术中星载云-气溶胶激光雷达的应用,弥补了被动遥 感技术探测的不足,可以对全球云-气溶胶垂直分布 进行长期观察^[11-13]。

较于地基、机载激光雷达, 星载云--气溶胶激光雷 达运行轨道高, 探测范围广, 具有精确获得全球云--气溶胶探测数据, 如沙漠、极地及海洋, 可触及到全球 每个角落, 还可免受底层大气的影响的特点。星载激 光雷达发展于 20 世纪 60 年代, 但用于探测云--气溶 胶的星载激光雷达是在 20 世纪 90 年代。由美国 NASA 研制出第一台星载云--气溶胶激光雷达系统 LITE, 并于 1994 年发射成功^[14-15]。随后俄罗斯分别 在 1995 年和 1996 年研制 BALKAN 和 ALISSA 云--气 溶胶探测激光雷达^[16]。2003 年美国 NASA 成功发射 冰、云、陆地海拔测量卫星 ICESat, 并搭载地球激光 测高系统 (GLAS)^[17], 主要任务探测南极和格陵兰冰 盖高程变化, 同时兼顾探测云--气溶胶垂直分布数

Rela way

据。2006年4月28日成功发射了由美国 NASA 和法 国空间研究中心 (CNES) 共同研制的 CALIPSO 卫星, 并搭载着主要设备正交偏振云-气溶胶激光雷达 (CALIOP)^[18-20]。2015年美国 NASA 研制出云-气溶 胶传输系统 (CATS)^[21-23],并于同年成功发射,安装在 国际空间站 ISS 中。即 GLAS 完成探测任务之后,美 国 NASA 研制出第二代冰、云、陆地海拔测量卫星 ICESat-2 仪器,并完成全部测试工作,搭载先进地表 激光测高系统 (ATLAS)^[24-26], 于 2018年9月15日发 射成功,主要探测任务海洋冰厚、地形、极地冰层、 云-气溶胶、植被高度等全球观测数据。欧空局 (ESA)研制 EarthCARE 卫星,并搭载大气激光雷达 (ATLID)^[27-30], 完成了相关的仪器测试, 于 2019年 8月发射。美国 NASA 正在开发气溶胶-云-生态系 统 (ACE)^[31-32], 计划于 2025 发射, 主要研究云与气溶 胶相互关系。

文中对典型的星载云--气溶胶激光雷达系统特点 进行了详细的分析与对比研究,并分析了当前星载 云--气溶胶激光雷达系统的发展与技术方向,给出了 我国研究星载云--气溶胶激光雷达系统研制的建议与 展望。

1 激光雷达空间技术实验(LITE)

作为世界第一台星载云-气溶胶激光雷达系统 LITE,由"发现号"航天飞机搭载并与1994年9月 9日飞行到轨道250 km,轨道倾角为57°,进行为期 10天的探测任务。LITE在10天的连续探测,其探测 任务,如表1所示。如图1和2所示,分别为LITE装 置图及在轨运行图。

图 3 为 LITE 系统结构图。LITE 是由激光发射 模块、望远镜接收器、后继光路模块、对光系统单 元及数据处理电子组件组成。激光器采用灯泵浦 固体 Nd:YAG 脉冲激光器,输出波长为1064、532、 355 nm;接收望远镜采用直径1m的轻量化的里奇-克雷蒂安望远镜;后继光路收集从大气中后向散射 信号,部分532 nm 信号被探测器探测导出作为 对准误差信号,来驱动双轴主动对光机构,实现接 收与发射光学对准。1064 nm,部分532 nm,355 nm 通过分束镜分束,并使用三个探测器探测:部分 532 nm,355 nm 波长采用光电倍增管 (PMT)探测 器,1064 nm 采用雪崩二极管 (APD) 探测器。

Tab.1 Detection mission of the LITE			
Troposphere	Stratosphere	Cloud	Earth's surface
tionship between aerosol scattering ratio and velength height and structure of PBL Optical thickness of PBL	Relationship between aerosol scattering ratio and wavelength atmospheric density and temperature within 40 km	Vertical distribution, cloud cover reflectivity, optical thickness	Reflectivity relation between backscatter and incident angle

表1 LITE 探测任务

图 2 在轨的 LITE 设备 Fig.2 LITE instrument on orbit

图 3 LITE 系统结构图

Fig.3 LITE system functional diagram

1.1 激光发射模块

激光发射模块由加压密封在容器中两台相同的 激光器组成,其中一台作为备用激光器。两台激光器 采用具有二倍频和三倍频功能的灯泵浦固体 Nd: YAG 脉冲激光器。激光发射模块可以同时输出波长为 1064、532、355 nm; 氘化砷酸氢铯 (CD*A) 和氘化磷 酸二氢钾 (Kd*P) 晶体置于温控箱中, 分别用于二倍 频和三倍频。通过工程数据系统来收集和探测每个 波长的脉冲能量;光学和电子元件全部放置在密封箱 中,并充干燥的氮气,加略大于一个标准大气压来提 供密封环境。激光器出光时,激光发射模块在电源 28 V 直流电中功率约为 1 865 W, 其中产生大部分的 热都来自闪光灯。安装在密封箱一端的风扇提供热 对流,保持箱内温度分布均匀;在闪光灯外壳提供水 冷系统,故激光器产生的热大部分被与氟里昂-水热 交换器传出,消除热对激光器运行的影响。激光发射 模块主要性能特点如表2所示。

由一个双轴电机驱动的棱镜组成视轴组件,用于 输出激光与望远镜接收视场直径的光学对准。工作 过程为:激光器输出平行于正交栅格平台的激光光束

表 2 激光器性能参数

Tab.2 Laser performance parameters

Item	Value		
Output wavelenth/nm	1 064	532	355
Laser A output energy/mJ	470	530	170
Laser A beam divergence/mrad	1.8	1.1	0.9
Laser B output energy/mJ	440	560	160
Laser B beam divergence/mrad	1.8	1.2	1.1
Pulse repetition rate/Hz		10	
Pulse width/ns		27	

离开密封箱,通过转向棱镜将激光光束成90°方向射 向地球。部分532 nm 后向散射大气信号通过后继光 路分离,并发送到微通道板象限的检测器中,电子器 件确定后向光束在象限探测靶面上的位置,并生成误 差信号来驱动双轴万向机构以使系统光学对准。

1.2 接收模块

接收模块由望远镜、后继光路系统及望远镜支撑 结构组成,其主要参数如表3所示。望远镜是一种里 奇-克雷蒂安望远镜,较经典的卡塞洛林望远镜有着 更宽的矫正视场。主镜材料采用 S200B 铍,次镜材料

第8期	www.i	irla.cn 第49卷
采用熔融石英。望远镜是通过后继 结构支撑在正交栅格光学平台上。 要由探测器、光学器件和信号调节电 束镜将后向散射光分成了355、532 其中采用光电倍增管(PMT)探测器	张光路系统的支撑 后继光路系统主 电子器件组成。分 2、1064 nm 波长, 探测 355、532 nm	波长,采用雪崩光电二极管 (APD) 探测 1 064 nm 波 长。后继光路系统还包括可移动的窄带干涉滤光片 和用于白天或夜晚的可调节设备视场的光阑,其中 1.1 mrad 和 3.5 mrad 的光圈分别用于白天和黑夜的 探测。
表 3 接收系统参数		

红外与激光工程

rab.5 Receiving system parameters					
Item		Value			
	Wavelength/nm	1 064	532	355	
	Quantum efficiency	33	14	21	
	Color filter bandwidth/nm Interference filter bandwidth/nm		265	60	
			0.35	1	
Aft optics	Interference gilter transmission	46%	45%	33%	
	Optical throughput (night)	64%	45%	42%	
	Optical throughput (day)	29%	20%	14%	
	Field of view (all wa	Field of view (all wavelengths) Selectable:1.1 mrad, 3.5 mrad, annular, blocked			
	Primary mirror diameter/in		37.	.25	
	Secondary mirror diame	ter/in	12.	.25	
Telescope	Focal length	Focal length		9.0	
	Focal ratio	Focal ratio		5.1	
	Obscuration ratio	uration ratio		11	

Tab 3 Receiving system narameters

2 正交偏振云--气溶胶激光雷达(CALIOP)

由美国 NASA 与法国空间研究中心 (CNES) 共同 研制出 CALIPSO 卫星,于 2006 年 4 月 28 日发射。 CALIPSO 卫星在 705 km 高度,轨道倾角 98°的轨道上 运行,并搭载着主要设备 CALIOP,用于探测云和气溶 胶。CALIOP 主要探测云和气溶胶垂直结构及性质对 全球大气变化的影响。

CALIOP 由激光发射系统和接收系统组成,如图 4

所示。CALIOP以T型光学平台为基准设计光机结构,确保发射和接收光学对准的稳定性。T型光学平台使用材料为碳-石墨复合材料,满足机械热稳定性。如表4所示为CALIOP发射系统参数。

表 4 CALIOP 发射系统参数

Tab.4 CALIOP transmitter system parameters

Item	Value	
Laser	Diode-pumped Nd:YAG	
Dulas ananas	110 mJ:1 064 nm	
Pulse energy	110 mJ:532 nm	
Pep rate	20.16 Hz	
Pulse length	20 ns	
Line width	30 pm	
Polarization purity	>1 000 : 1 (532 nm)	
Beam divergence	100 µrad (after beam expander)	
Boresight range	±1°,1.6 μrad steps	
Laser environment	18 psia, dry air	

2.1 激光发射系统

激光发射子系统包括两套完全相同的激光发射器,每个都有一个扩束镜,和确保发射和接收光学对准视轴校准系统。激光器采用二极管泵浦 Nd:YAG, 生产出 220 mJ 能量的 1 064 nm,并通过二倍频获得单脉冲能量为 110 mJ 的 1 064 nm 和 532 nm,脉宽 20 ns,重复频率 20.16 Hz。每台激光器都放置在自己的密封箱中,密封环境为干燥空气,压强略超过标准 大气压,通过密封箱内能量检测器监测激光器输出脉 冲能量。激光器输出激光通过扩束装置后,减小其发 散角从而在地球表面产生直径为 70 m 的光斑;使用 专用的散热面板进行被动冷却。

2.2 接收系统

如图 5 所示,接收子系统主要由望远镜、后继光路、探测器、前置放大器和线性驱动组成,并安装在T型光学平台上。CALIOP 有效载荷如图 6 所示,其中信号处理和控制电路安装在有效载荷外壳的箱子中。望远镜直径为1m,其中主镜、次镜、计量结构和内遮光筒的材料采用铍,确保机械热稳定性;遮阳板采用碳复合材料,避免太阳光直接照射镜子;与T型

图 5 CALIOP 功能框图

Fig.5 Functional block diagram of CALIOP

图 6 CALIOP 有效载荷 Fig.6 CALIOP payload

光学平台之间进行隔热处理。安置在望远镜焦点处的光阑抑制了杂散光,并定义望远镜视场为130 mrad (全角)。可移动的快门能够测量探测器的暗电流,其 机构可以驱动消偏器进入532 nm 通道,对其进行消 偏校准。偏振分束器用于分离532 nm 的水平和垂直 回波信号。在532 nm 通道中,窄带标准具和干涉滤 光片结合使用来抑制背景信号,使用探测器为 PMT, 可提供大线性动态范围,非常低的暗噪声信号和合理 的量子效率;在1064 nm 通道中,单独使用干涉滤光 片来仰制背景信号,使用探测器为 APD,可提供良好 动态范围和量子效率。在532 nm 和1064 nm 两通道 里都安装了双重14 位数字转换器,可提供所需有效 的22 位动态范围,来确保后向散射信号都被探测 到。表5 为 CALIOP 接收性能参数。

图 7 在轨的 CATS 设备 Fig.7 CATS instrument on oribit

胶传输系统 Cats 成功地完成了为期 33 个月的大气探测任务,并在国际空间站上结束了运行。

CATS有效载荷探测云-气溶胶完成3种探测任 务:(1)提供气溶胶垂直分布的实时观测资料,输入到 全球模式中;提供云-气溶胶层的廓线,以及气溶胶大 小和形状信息。(2)拓展激光雷达大气探测连续性的 星载激光雷达功能,可提供类似于 CALIPSO 的云-气 溶胶廓线的探测数据,填充了数据缺口,这样的数据 可以不断改善大气模式和对地球系统和气候反馈过 程的理解。(3)采用高重频激光器和光子计数器来探 测垂直廓线的能力以及高光谱分辨率激光雷达 (HSRL)技术和 355 nm 的测试能力,为了未来星载激 光雷达任务研发做准备。

表 6 为 CATS 主要的科学运行模式。如图 8 所 示为 CATS 有效载荷模型,主要由 2 个高重复频率的 Nd:YVO4 激光器,望远镜和探测器盒组成。

Tab.6 CATS main science modes

Science mode 1	Science mode 2	Science mode 3	Science modes 4,5,6
Backsetter:532,1 064 nm	Backsetter:532,1 064 nm	Backsetter:355,532,1 064 nm	Backup mode
No HSRL Depolarization:	HSRL:532 nm Depolarization:	No HSRL Depolarization:	Use laser 2 and receiver
532,1 064 nm	1 064 nm	532,1 064 nm	from mode 1
Each HOV is 0.5° from madr RSF00	Each IFOV is 0.5° from madir Groups FFOV	Lico ITO's is or from addr	Each HEVY is Usafree RESIDIV (2.5 ATO) LEXT

表 5 CALIOP 接收系统参数

Tab.5 CALIOP receiving system parameters

Item	Value
Telescope diameter	1 m
Field of view/mrad	130(full angle)
Digitizer sample rate/MHz	10
Vertical sample spacing/m	15
Electronic bandwidth/MHz	2.0
Vertical resolution as determined by bandwidth/m	30
Digitizer resolution/bits	14
Maximum dynamic range(merged)	2.5 E6(>21 bits)
532 nm channel	
Detector	PMT
Etalon passband/pm	37
Etalon peak transmission	85%
Blocking filter/pm	770
1 064 nm channel	
Detector	APD
Optical passband/pm	450
Peak transmission	84%

3 云-气溶胶传输系统 (CATS)

云 - 气溶胶传输系统 Cats 由美国 NASA 在 2015年1月1日发射并在同年1月22日安装在国际 空间站 (ISS)中日本实验模块-暴露设施 (JEM-EF) 中。Cats 随 ISS 在轨道 405 km,轨道倾角为 51°上运 行,图 7 为在轨示意图。2018年1月18日,云-气溶

图 8 CATS – ISS 有效载荷 Fig.8 CATS – ISS payload

3.1 激光发射系统

激光器 1 采用 Nd:YVO₄ 激光器, 从云物理激光 雷达^[33] 设备中继承并发展而来, 其性能参数如表 7 所

	I
Item	Parameters
Laser1	Nd:YVO ₄
Repetition rate	5 000 Hz
Output divergence	532 nm:0.75 mrad to 1.125 mrad
	1 064 nm: 0.75 mrad to 1.8 mrad
	532 nm:<1 300
Output beam diameter	1 064 nm:<1 300
	2 mJ: 532 nm
Output beam energy	2 mJ: 1 064 nm
	532.12 nm
wavelength	1 064.25 nm
x · · · 1.1	532 nm:45 pm
Line width	1 064 nm:100 nm
N 1 11	532 nm:<10 ns
Pulse width	1 064 nm:<10 ns
- 9	532 nm:1.1-1.2
M^2	1 064 nm:1.2-13
	532 nm:>100:1
Polarization	532 nm: >100:1

表 7 激光器 1 性能参数

Tab.7 Performance parameters of laser 1

示,并用于科学模式1,发射系统装备如图9所示。

激光器 2 采用种子注入脉冲 Nd:YVO₄激光器, 从用于机载云-气溶胶传输系统^[34]的激光发射器中继 承并发展而来,其性能参数如表 8 所示。组成的激光 发射系统为激光 2,主要由激光光学模块 (LOM 2),激 光电模块 (LEM 2)和外部三倍频发生器模块 (THG) 组成。LOM 2 产生 1 064 nm 和 532 nm 输出,通过 THG 产生 355 nm。激光 2 存在两种运行模式,一种使用 THG;另一种不用 THG。如图 10 所示为激光 2 发射 系统的结构分布图,其工作过程利用可移动的反射镜 装置放置在 LOM 2 和 THG 转向反射镜之间,由控制 其运动将 LOM2 的输出引向或远离 THG,实现激光 2 的运行模式的转换。

图 9 激光器 1 发射 532 nm 和 1 064 nm 的工作台 Fig.9 Work table for laser1 emitted 532 and 1 064 nm

20190501-8

第8期

表 8 激光器 2 性能参数

Tab.8 Performance parameters of laser 2

Laser2		Injection-seeded, pulsed Nd: YVO ₄		
		2 wavelengths	3 wavelengths	
Repetition rate		4000 Hz		
Output divergence	355 nm	N/A	0.7 mrad to 1.875 mrad	
	532 nm	0.75 mrad to 1.125 mrad	1.275 mrad to 1.875 mrad	
	1 064 nm	0.75 mrad to 1.8 mrad	1.275 mrad to 3 mrad	
	355 nm	N/A		
Output beam diameter	532 nm	<1 200	<1 300	
	1 064 nm	<1300		
	355 nm	N/A		
Output beam energy	532 nm	2 m I	2 mJ	
0,	1 064 nm	2 1113		
	355 nm	N/A	354.75	
Wavelength	532 nm	532.12 nm	532.12 nm	
	1 064 nm	1064.25 nm	1064.25 nm	
	355 nm	N/A	0.08 pm	
Line width	532 nm	<0.5 nm	0.145 pm	
	1 064 nm	<0.3 pm	0.5 pm	
	355 nm	N/A		
Pulse width	532 nm	<10 ns	<10 ns	
	1 064 nm	~10 115		
M^2	355 nm	N/A	1.08	
	532 nm	1.25	1.5	
	1 064 nm	1.39	3.1	
Polarization	355 nm	N/A		
	532 nm	>100:1	>100 : 1	
	1 064 nm			

图 10 在工作平台上的 LOM 2 和 THG 的实体模型 Fig.10 Solid model of LOM 2 and its THG on a platform

3.2 接收系统

CATS采用直径为 60 cm 的望远镜, 材料采用铍, 可提供较高的热稳定性结构。其视场为110 mrad,可 允许0.5°的视角。如图 11 所示为组装前的望远镜,与 探测器采用光纤耦合方式连接。CATS具有4个 探测器标准盒,其中前2个探测器标准盒是相同的, 用于模式1的LFOV和RFOV,主要包括2个532nm 平行和 2个 532 nm 垂直后向散射探测通道, 1个 1064 nm 平行和1个1064 nm 垂直后向散射探测通 道的6个探测探测通道:第3个探测标准盒用于模式 3, 其中包括模式1的相同的6个探测通道, 并添加了 1个355 nm 后向散射探测通道,共7个探测通道。如 图 12 所示为用于模式 1 和 3 的探测器盒。用于 HSRL 探测的探测器盒,包括 12 个探测通道,其中有 10个特定的 532 nm 的 HSRL 探测通道;1个1064 nm 平行和1个1064 nm 垂直后向散射探测通道。HSRL 探测器盒的核心部分是标准具,提供 HSRL 探测所需 的光谱分辨率,望远镜接收的后向散射光通过标准 具,和带通滤波器串联使用来抑制背景光,可实现白 天探测。

图 11 望远镜 Fig.11 Telescope

图 12 模式 1(LFOV 和 RFOV) 和模式 3 探测器标准盒 Fig.12 Detector standard boxes for Mode 1 (LFOV and RFOV) and Mode 3

4 大气激光雷达

由欧空局研发,计划于 2019年 8月 (原定于 2013年)发射的 EarthCARE 卫星,其主要载荷有大气 激光雷达 (ATLID)、多普勒云雷达 (CPR)、多光谱成

像仪 (MSI) 和宽带辐射计 (BBR) 组成, 彼此之间独立 运行, 并协同工作。如图 13 所示为 EarthCARE 卫星 载荷探测模型图, 该卫星将在 393 km 的太阳同步轨 道上进行全球探测。

图 13 卫星和仪器观测方式几何图

Fig.13 Satellite and instruments observation geometry

EarthCARE 卫星主要探测任务: (1) 在全球范围 内探测自然和人为的气溶胶垂直廓线和辐射特性, 以 及与云的相互作用; (2) 在全球范围内探测大气液体 水和冰的垂直分布, 通过云的传输, 以及其辐射的影 响; (3) 观测云的分布, 云和降水的相互作用以及在云 内垂直运动的特性; (4) 通过结合反演的气溶胶和云 的特性来获得大气辐射加热和冷却廓线。其中 ATLID 主要完成气溶胶和薄云的垂直廓线, 并与其他 载荷协同工作, 完成探测任务。

ATLID 工作波长为 355 nm,提供高度 0~20 km 的 100 m 和 20~40 km 的 500 m 的垂直分辨率的大气 回波信号,其测量模型如图 14 所示。由于 ATLID 采 用了高光谱分辨技术,可以分离米散射和瑞利散射回 波信号,从而可以获得光学厚度,其光机系统结构如 图 15 所示。

如图 15 所示为了减少机械耦合及在卫星集成序 列中提供良好的柔性, ATLID 设计成一个独立的系统 设备,其光机系统结构主要是由相互独立的发射系统 和接收系统组成的收发分置的结构。发射系统结构 和接收系统结构利用柔性结构安装在碳纤维夹层基 板上,并且系统内部光机结构都是通过柔性结构连 接,提供高稳定性的光机结构。如图 16 所示为 ATLID 的系统结构图。

图 14 ATLID 采样和测量原理

图 15 ATLID 光机系统

Fig.15 ATLID opto-mechanical system

图 16 仪器功能框图

Fig.16 Instrument functional architecture

4.1 激光发射系统

激光器主要包括功率激光头、控制发射激光电子设备以及提供种子激光的参考激光头。

参考激光头包括参考激光、种子激光和控制电子 器件,提供1064 nm的连续波输出信号,其频率可逐 步调节,以便进行用于校正的扫频工作,来满足稳频 需求。

功率激光器是二极管泵浦单模 Nd:YAG 激光器, 功率为 300 W, 重复频率为 51 Hz, 脉冲宽度为 25 ns, 发射脉冲能量为 38 mJ, 波长为 355 nm; 谱线宽度低 于 50 MHz, 频谱可调范围为 25 GHz。其激光头主要 由产生 8 mJ 的低脉冲能量的主振荡器、放大脉冲能 量到 150 mJ 的泵浦单元、二倍频以及三倍频组成, 其 发射的偏振为线性。如图 17 所示, 为光束转向机构, 调节精度可达到亚微米级, 工作原理为通过调整激光 发射视线来持续保持发射与接收在飞行过程中两轴 平行。图 18 所示为功率激光头机械结构, 该型腔由 两个用密封圈的盖子进行密封, 密封环境为干燥空 气, 压强略高于标准大气压。激光器头通过带有柔性 结构的安装座安装在 ATLID 支撑基板上。

图 17 光束转向机构 Fig.17 Beam steering mechanism

图 18 功率激光头机械结构 Fig.18 Power laser head mechanical structure

图 19 所示为扩束器机械结构,通过带有柔性结构的安装座安装在 ATLID 支撑基板上,且输入端与 功率激光头输出端柔性连接。激光通过扩束装置来 减小其发散角,减少光束衍射。遮光筒设计为了保护 扩束器输出端不受到外部环境污染,如在设备和卫星 装配、集成、测试及飞行环境下,遮光筒有效保护了 扩束器输出窗口。

图 19 扩束器 Fig.19 Beam expander

4.2 接收子系统

图 16 所示的接收子系统主要由望远镜、后继光路、探测器等组成。

望远镜由空中客车防务及航天公司设计完成,采 用无焦的卡塞格林望远镜,主要通过无焦光学继电器 (包括视场光阑)提供窄视场,直径为 620 mm,视场小 于 75 μrad,材料采用碳化硅,其具有高导热性和低热 膨胀系数,可提供高稳定性结构。如图 20 所示为望 远镜及主镜结构。

图 20 望远镜及主镜结构 Fig.20 Telescope and primary mirror structure

如图 21 所示为后继光路系统。由望远镜接收的 回波信号进入入射滤波器 (带宽小于 1 nm), 通过第一 反射镜反射到协调对准传感器器件中分束镜, 将信号 中部分反射到协调对准传感器上, 其余透过分束镜到 第二反射镜, 反射到截止滤波器 (限制带宽 65 µrad) 中,进入用于过滤背景光的 F-P 标准具(带宽小于 200 pm), 并通过第三反射镜反射到高光谱分辨率滤波器中, 分 为 3 个探测通道, 并进入光纤耦合器中, 通过多模光 纤耦合到探测器中。如图 22 所示为高光谱分辨率滤 波光学原理图。

其中,入射滤波器、截止滤波器及光纤耦合器是

红外与激光工程		
第 8 期 www.	irla.cn 第49卷	
由 Bertin 技术公司采用原始飞行模式开发的,并完成	硅和微晶玻璃,带宽可控制在 0.3 pm,可有效分离米	
了性能测试,如图 23~25 所示,分别为入射滤波器、截	散射和瑞利散射的回波信号,如图 27所示为高光谱分	
止滤波器和光纤耦合器机械结构。如图 26所示,为协	辨率 F-P 标准具。	
调对准传感器光学器件,由 CRISA 开发,用于测量回	科学的探测功能主要由 CCD 探测器和仪器检测	
波信号的光斑,精度可达到 1/10 像素,并完成了机械	电子设备来保证,其中 CCD 探测器由 E2V 专门为	
和热稳定性的测试工作。高光谱分辨率滤波器,由	ATLID 开发设计,并直接安装在设备的冷板上,被动	
RUAG和 SESO开发,材料采用高热稳定性的二氧化	冷却-30 ℃;仪器检测电子设备由 CRISA 设计开发。	
High spectral resolution etalon (ERO-HSRE) Folding mirror 3 Background etalon (ERO-BKGE) Blocking filter (ERO-BF)	Fiber coupler assembly (FCA-TS) Folding mirror 1 Entrance filtering optics (ERO-EFO) Co-alignment sensor STM (CRISA) Folding mirror 2	

图 21 后继光路系统 Fig.21 Aft optical path system

图 22 高光谱分辨率滤波光学原理

Fig.22 High spectral resolution filtering optical principle

图 23 入射滤波器 Fig.23 Incoming filter

图 24 截止滤波器 Fig.24 Cutoff filter

图 25 光纤耦合器 Fig.25 Fibre coupler

图 26 协调对准传感器光学器件 Fig.26 Co-alignment sensor STM

图 27 高光谱分辨率标准具 Fig.27 High spectral resolution etalon

5 总结与展望

5.1 星载云--气溶胶激光雷达系统技术特点

星载云-气溶胶激光雷达由于搭载平台的限制, 特别要考虑体积、质量、功耗、热管理、寿命长、高可 靠性及稳定性的约束,故针对任务需求设计光机系统 需要考虑这些问题。通过以上关于典型的星载云--气 溶胶激光雷达光机系统的分析可知:

星载云-气溶胶激光雷达的光源主要有低重频大 能量脉冲激光器和高重频低能量脉冲激光器两大类, 如 LITE 使用灯泵浦 Nd:YAG, CALIOP 使用二极管泵 浦 Nd:YAG, ATLID 使用二极管泵浦单模 Nd:YAG, 都 是技术成熟的低重频大能量的脉冲激光器;高重频脉 冲激光器技术尝试应用在星载激光雷达中,可提高分 辨率和信噪比,如 CATS 使用 Nd:YVO4 激光器和种 子注入脉冲 Nd:YVO4 激光器;波长有 1064 nm 及其 二倍频 532 nm 和三倍频 355 nm。从单脉冲能量指标 可知,低重频大能量激光器的能量远远大于高重频低 能量激光器,如 LITE 的 1064 nm 可达到 400 mJ 以 上,532 nm 可达到 500 mJ 以上,355 nm 可达到 150 mJ 以上; CALIOP 的 1064 nm 和 532 nm 可达到 110 mJ; ATLID 的 355 nm 可达到 150 mJ; 而 CATS 中 3 个波 长的能量分别只有2mJ,故采用低重频大能量激光器 探测云-气溶胶的距离及信噪比远远大于使用高重频 低能量激光器。从脉冲宽度指标可知,低重频大能量 激光器脉冲宽度远小于高重频低能量激光器,如 LITE 激光器脉冲宽度为 27 ns, CALIOP 激光器脉冲 宽度为 20 ns, ATLID 激光器脉冲宽度为 25 ns; 而 CATS 激光器脉冲宽度小于 10 ns, 使得高重频低能量 激光器可以获得的空间分辨率比低重频高能量激光 器小两倍以上,从而获得精细化的云-气溶胶的探测 数据。从重复频率指标可知,低重频大能量激光器重 复频率远远小于高重频低能量激光器,如 LITE 激光 器重复频率为 10 Hz, CALIOP 激光器重复频率为 20.16 Hz, ATLID 激光器重复频率为 51 Hz; 而 CATS 激光器1重复频率为5000 Hz 和激光器2重复频率为 4 000 Hz, 高的重复频率可以有效增加单位时间内的 脉冲数目,有助于提高激光的平均发射功率,从而提 高其信噪比。

为了获得高稳定性激光器,在设计激光器中低重 频脉冲激光器利用干燥气体密封且压强略高于一个 标准大气压进行密封,如 LITE 的激光器采用干燥氮 气来提供密封环境, CALIOP 和 ATLID 的激光器采用 干燥空气进行密封,压强都略高于一个标准大气压; 在设计高重频脉冲激光器时,采用的是环境适应性实 验分析来测试其稳定性,并采用柔性体连接在平台上。

星载云-气溶胶激光雷达接收望远镜大多采用典型的卡塞格林望远镜,具有较小的视场,符合星载激 光雷达对望远镜视场的要求。如图 28 所示为卡塞格 林望远镜原理图,其中 F1 是主镜焦点,也是副镜焦 点;F2 是卡塞格林焦点的距离。卡塞格林望远镜是 副镜至卡塞格林焦点的距离。卡塞格林望远镜是 典型的反射式望远镜,故还具有适合作为星载设备的 优势:(1)不像折射式望远镜,其光学是不经过镜片内 部,只需要保证反射镜面的性能及质量,故可以对主 副镜最大限度地轻量化设计,从而减轻望远镜质量; (2)这种折叠式光路设计可以减小望远镜的体积; (3)副镜将主镜反射过来的光线聚焦到主镜背后,适 合在主焦点出安装后继光路单元且不影响光线的 传输。

反射式望远镜较折射式望远镜,机械结构相对复

Fig.28 Principle of Cassegrain telescope

杂,对望远镜使用的制造材料提出较高的要求。星载 望远镜材料的选用主要从密度、热导率、刚度及热膨 胀系数等因素综合考虑^[35-38]。LITE中主镜、CALIOP和 CATS 使用的望远镜材料都使用了金属铍, 是最轻的 碱土金属,其密度只有铝的 2/3,强度则是铝的 6.5 倍, 热传导率为铝的 1.3 倍, 热膨胀系数是铝的 0.5, 尤其 在低温下几乎没有冷缩变形。铍具备的高的热稳定 性,可大大减少望远镜由于温度的变化引起的镜片和 机械结构的变形,现在已经广泛运用于星载设备。如 詹姆斯·韦伯"红外太空望远镜制造材料使用的是金 属铍^[39], 口径达到 6.5 m, 超过哈勃太空望远镜 (2.4 m) 的 2.5 倍,但质量只有其一半,且机械强度足以支撑其 运行4倍与地月距离的太空。ATLID使用的望远镜 材料为碳化硅,其密度较金属铍大,但其莫氏硬度可 达到9.5级,仅次于金刚石,故制成主副镜不需要太厚 即可满足刚度需求,且不易受损。碳化硅的热导率与 铝相当,但其热膨胀系数只有铝的1/10,具有极好的 热稳定性,在温度变化过程中几乎不会引起结构变 形,如 EAS 研制的 Herschel 太空望远镜主镜材料为碳 化硅[40]。

星载云-气溶胶激光雷达的探测器主要有两大 类,其中355 nm/532 nm采用的是光电倍增管 (PMT); 1064 nm采用的是雪崩二极管 (APD)。PMT 探测器 模块包括一个光电倍增管,用于将光转换为电信号, 一个高压电源电路和一个分压电路,特点:具有高的 增益、光谱响应范围广 (大的光敏区面积)、可将所有 元件高度集成在一个模块中,具有结构紧凑,环境温 度适应性高;但量子效率低,可探测的最大波长不高、 容易受到外部电磁场影响而变化,故常用于接收 532 nm/355 nm 回波信号;其用于星载云-气溶胶激光 雷达探测的技术包括: (1) 光的屏蔽; (2) 电场的屏蔽; (3) 磁场的屏蔽。新型的 PMT 探测器: 混合光电探测 器 (HPD), 包含组装在真空或电子管内的半导体器件, 可以在实现高效电子倍增的同时减少噪声, 结构 紧凑, 环境适应性高。APD 通过施加反向电压产生内 部增益, 具有比 PIN 光电二极管更高的信噪比, 更快 的灵敏度以及更低的暗电流, 适用于接收 1 064 nm 回 波信号; 但其应用于载云--气溶胶激光雷达探测的技术 包括: (1) 控温精度; (2) 供电模块; (3) 狭窄空间抗干扰 能力。

星载激光雷达发射与接收采用异轴结构,为了确 保其两轴平行,光机系统设计中多采用自动对光系 统,利用误差信号来驱动光束转向机构,确保出射光 轴与望远镜轴平行,如 LITE 采用驱动双轴万向机构, 使得出射光通过转向棱镜后的光轴与望远镜轴平行 对准; CALIOP 采用视轴校准系统确保出射光轴与望 远镜轴平行; ATLID 通过驱动光束转向机构来确保收 发准直。

5.2 星载云--气溶胶激光雷达技术发展趋势及展望

星载云-气溶胶激光雷达技术向多波长高光谱分 辨激光雷达(HSRL)方向发展。从美国 NASA 的星载 云-气溶胶激光雷达发展过程可发现,从 LITE、 CALIOP 和 CATS 的模式 1、3、4、5、6都是利用米散 射信号来假设特定参数,反演气溶胶垂直分布数据, 主要不足有:必须要用无气溶胶区域的信号进行标 定,且必须夜晚标定,故白天的常数未知;必须假设激 光雷达比,该数值与气溶胶性能参数相关故反演精度 不高。而 CATS 的模式 2,其探测任务之一为正在开 发的 ACE 中多波长高光谱分辨激光雷达提供实验数 据,以及欧空局正在开发的 ATLID 都运用了高光谱 分辨率技术,其探测原理如图 29 所示。

高光谱分辨技术的优势主要体现在:(1)可进行 内部定标,且不需要假设激光雷达比;(2)不需要反演 消光系数,可获得更精确的气溶胶层边界数据;(3)为 气溶胶类型提供更可靠的探测数据;(4)具有构造三 波长后向散射和两波长消光系数数据来反演气溶胶 粒径及密度分辨的潜力(正在研发的ACE中激光雷 达为355、532、1063 nm 3 波长探测)。

星载云--气溶胶激光雷达主要技术挑战:(1)在白 天背景光影响下导致系统探测距离低,故白天的背景 光的有效抑制提高信噪比;(2)有云的情况下,特别是 厚云出现时,往往激光穿不透云层,导致云下的高度 www.irla.cn

无法探测,故无法对云层以下的云--气溶胶进行探测, 特别是边界层内的云--气溶胶的探测。(3)整个系统 结构的稳定性是影响星载激光雷达的使用寿命,高稳 定的结构是保证整个系统的运行正常。

量子激光雷达结合了量子信息技术和激光雷达 工作理论的优点,其工作原理与传统的激光雷达相 比,信息载体为光的量子态,具有极高的灵敏度,可实 现对极弱光信号的探测,探测距离极远,但目前其工 作体制不够完善,理论尚未成熟,需要大量的理论和 实验研究。随着这种探测技术的不断研究,不断成 熟,为下一代星载激光雷达探测技术提供在 HSRL 技 术之后的新型的探测技术。

多源融合、多星组网实现更全面、更系统的科学 探测。单一的探测方式是无法完成探测目标的全 面、系统、高效的科学探测,必须针对探测任务需求 来科学配置多方式探测,实现各方式各方法优势互 补,多源融合,设备协同工作,获得更全面、更系统、 更精细的定量观测场。如 EarthCARE 卫星探测任务 中,不仅搭载大气激光雷达 (ATLID),而且还搭载多 普勒云雷达 (CPR)、多光谱成像仪 (MSI)和宽带辐射 计 (BBR)有效载荷; ACE 卫星以单星为例,其载荷主 要有两台主动载荷——Ka/W 双频多普勒测云雷 (CPR), 355、532、1064 nm 多波长高光谱分辨激光雷 达 (HSRL); 两台被动载荷 ——水色多通道光谱计 (ORCA), 多角度、多光谱偏振成像仪 (MSPI)。其目的 是建立多种方式相结合的协同探测系统, 发挥各探测 手段的优势, 对探测目标进行更全面、更系统的科学 探测, 真正能够实现全天候、全覆盖的精确探测。

随着单星试验取得不断成功,使得业务星向星座 方向发展,如A-Train卫星星座有7颗卫星,分别由 OCO-2、GCOM-W1、Aqua、CALIPSO、CloudSat、 PARASOL和Aura组成,其中PARASOL在2013年 12月28日停止运行并退出A-Train,这些业务星采用 组网运行,提高星载载荷任务的时效性、全覆盖、关 联性,是未来星载发展重要方向。

参考文献:

- Duan Jing, Mao Jietai. Progress in researches on interaction between aerosol and cloud [J]. *Advances in Earth Science*, 2008, 23(3): 252-261. (in Chinese) 段婧, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学 进展, 2008, 23(3): 252-261.
- [2] Zhang Junqiang, Xue Chuang, Gao Zhiliang, et al. Optical remote sensor for cloud and aerosol from space: past, present and future [J]. *Chinese Optics*, 2015, 8(5): 5-24. (in Chinese) 张军强,薛闯,高志良,等. 云与气溶胶光学遥感仪器发展现状 及趋势[J]. 中国光学, 2015, 8(5): 5-24.

[3] Wang Fu. Analysis of aerosol-cloud interaction observed from spaceborne sensors over Eastern China[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)

王富. 中国东部地区气溶胶—云相互作用卫星遥感建模研究 [D]. 成都: 电子科技大学, 2015.

- [4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
- [5] Rao C R N, Stowe L L, Mcclain E P. Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications [J]. *International Journal of Remote Sensing*, 1989, 10(4-5): 743-749.
- [6] Torres O, Bhartia P K, Herman J R, et al. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements [J]. *Journal of the Atmospheric Sciences*, 2002, 59(3): 398-413.
- [7] Curier R L, Veefkind J P, Braak R, et al. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe [J]. *Journal of Geophysical Research Atmospheres*, 2008, 113(D17): 1-16.
- [8] Barnes W L, Xiong X, Guenther B W, et al. Development, characterization, and performance of the EOS MODIS sensors[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5151: 337-345.
- [9] Martonchik J V, Diner D J, Crean K A, et al. Regional aerosol retrieval results from MISR [J]. *IEEE Transactions on Geoscience & Remote Sensing*, 2002, 40(7): 1520-1531.
- [10] Deuzé J L, Goloub P, Herman M, et al. Estimate of the aerosol properties over the ocean with POLDER [J]. *Journal of Geophysical Research Atmospheres*, 2000, 105(D12): 15329-15346.
- [11] Zheng Yongchao, Wang Yuchao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar [J]. *Infrared and Laser Engineering*, 2018, 47(3): 0302002. (in Chinese) 郑永超, 王玉诏, 岳春宇. 天基大气环境观测激光雷达技术和 应用发展研究[J]. 红外与激光工程, 2018, 47(3): 0302002.
- [12] Song Changbo, Zhao Yiming. Development status and direction of spaceborne lidar and radar for cloud and aerosol remote sensing [J]. *Journal of Telemetry, Tracking and Command*, 2017, 38(6): 10-16. (in Chinese)

宋长波,赵一鸣.星载云、气溶胶遥感雷达技术现状与发展趋势[J].遥测遥控,2017,38(6):10-16.

- [13] Lu Naimeng, Min Min, Dong Lixin, et al. Development and prospect of spaceborne LIDAR for atmospheric detection [J]. *Journal of Remote Sening*, 2016, 20(1): 1-10. (in Chinese) 卢乃锰, 闵敏, 董立新, 等. 星载大气探测激光雷达发展与展 望[J]. 遥感学报, 2016, 20(1): 1-10.
- [14] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA's Lidar in-space technology experiment [J]. *Proceedings of the IEEE*, 1996, 84(2): 164-180.
- [15] LITE: Measuring the atmosphere with laser precision [EB/OL].
 (1994-08-01) [2018-03-30]. https://www.nasa.gov/centers/ langley/news/factsheets/LITE.html.
- [16] Matvienko G G. Modern concept of a spaceborne lidar[C]// International Symposium on Atmospheric and Ocean Optics. International Society for Optics and Photonics, 1999.
- [17] NASA's Successful ice cloud and land elevation mission comes to an end [EB/OL]. (2010-08-27)[2018-05-31]. https://www.nasa. gov/mission_pages/icesat/icesat-end.html.
- [18] Winker D M, Hostetler C A. Status and performance of the CALIOP lidar[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5575: 8-15.
- [19] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. *Journal of Atmospheric & Oceanic Technology*, 2009, 26(11): 2310-2323.
- [20] Stephens M, Weimer C, Lieber M. On-orbit models of the CALIOP lidar for enabling future mission design[C]// Earth Observing Systems XV. International Society for Optics and Photonics, 2010: 227-235.
- [21] Chuang T, Burns P, Walters E B, et al. Space-based, multiwavelength solid-state lasers for NASA's Cloud Aerosol Transport System for International Space Station (CATS-ISS)[C]//Solid State Lasers XXII: Technology and Devices, 2013: 8599: 85990N.
- [22] Yorks J E, Mcgill M J, Nowottnick E P. Near real time vertical profiles of clouds and aerosols from the Cloud-Aerosol Transport System (CATS) on the international space station[C]// AGU Fall Meeting. AGU Fall Meeting Abstracts, 2015.
- [23] Storm M, Stevenson G, Hovis F, et al. Lidar and laser technology for NASA 'S Cloud-Aerosol Transport System (CATS) payload on the international space station (JEM-EF)[C]//EPJ Web of Conferences , 2016, 119: 04002.
- [24] Forfinski-Sarkozi N A, Parrish C. Analysis of MABEL Bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS [J]. *Remote Sensing*, 2016, 8(9): 772.
- [25] Lori A Magruder, Kelly M Brunt. Performance analysis of

airborne photon-counting lidar data in preparation for the ICESat-2 mission [J]. *IEEE Transactions on Geoscience & Remote Sensing*, 2018, 99: 1-8.

- [26] Nicholas Sawruk, Patrick M Burns, Ryan E Edwards, et al. ICESat-2 laser Nd: YVO₄ amplifier[C]//Components and Packaging for Laser Systems IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2018.
- [27] João P D C, Hélière A, Hors L L, et al. ATLID, ESA atmospheric LIDAR development status[C]//EPJ Web of Conferences, 2016, 119: 04003.
- [28] Hors L L, Toulemont Y, Hélière A. Design and development of the backscatter LIDAR ATLID for EarthCARE[C]// International Conference on Space Optics, 2017: 53.
- [29] Hélière A, Hors L L, Toulemont Y. Development of ATLID, the earthcare UV backscatter lidar[C]//Society of Photo-Optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017: 27.
- [30] Hélière A, Gelsthorpe R, Hors L L, et al. ATLID, the atmospheric lidar on board the Earthcare Satellite[C]// Society of Photo-Optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017: 81.
- [31] Maring H, Bontempi P. Aerosol cloud ecosystem(ACE) decadal survey mission[R/OL]. (2010-11-16)[2018-01-25]. https:// acemission.gsfc.nasa.gov/.
- [32] Rout D, Chakrabarty D, Sarkhel S, et al. The ionospheric impact of an ICME driven sheath region over Indian and American sectors in the absence of a typical geomagnetic storm: ICME sheath region and PP electric field [J]. *Journal of Geophysical Research: Space Physics*, 2018, 123(5): 4298-4308.
- [33] Schmid B, Hlavka D, Spinhirne J, et al. Cloud Physics Lidar: instrument description and initial measurement results [J]. *Applied Optics*, 2002, 41(18): 3725-3734.

- [34] Yorks J E, Mcgill M J, Scott V S, et al. The Airborne cloud-aerosol transport system: overview and description of the instrument and retrieval algorithms [J]. *Journal of Atmospheric* & Oceanic Technology, 2014, 31(11): 2482-2497.
- [35] Sein E, Toulemont Y, Safa F, et al. A ϕ 3.5 M SiC telescope for Herschel mission[C]//SPIE, 2003, 4850: 606-618.
- [36] Wang Zhi, Sha Wei, Chen Zhe, et al. Preliminary design and analysis of telescope for space gravitational wave [J]. *Chinese Optics*, 2018, 11(1): 131-151. (in Chinese)
 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131-151.
- [37] Mu Yongji, Wan Yuan, Liu Jiqiao, et al. Optomechanical analysis and optimization of spaceborne lidar telescope primary mirror [J]. *Infrared and Laser Engineering*, 2018, 47(7): 0718002. (in Chinese)
 穆永吉, 万渊, 刘继桥, 等. 星载激光雷达望远镜主镜光机分析 与优化[J]. 红外与激光工程, 2018, 47(7): 0718002.
- [38] Zhao Haibo, Zhao Weiguo, Dong Jihong, et al. Accuracy analysis and testing for secondary mirror adjusting mechanism in large space telescope [J]. *Optics and Precision Engineering*, 2019, 27(11): 2374-2383. (in Chinese) 赵海波, 赵伟国, 董吉洪, 等. 大型空间望远镜次镜调整机构精 度分析与测试[J]. 光学 精密工程, 2019, 27(11): 2374-2383.
- [39] Nixon C A, Achterberg R K, Adamkovics M, et al. Titan science with the James Webb Space Telescope (JWST) [J]. *Publications* of the Astronomical Society of the Pacific, 2016, 128(959): 018007.
- [40] Zhao Hongchao, Zhang Jingxu, Yang Fei, et al. Secondary mirror supporting structure for 1.2 m telescope [J]. *Editorial Office of Optics and Precision Engineering*, 2017, 25(10): 2614-2619. (in Chinese)
 赵宏超,张景旭,杨飞,等. 1.2 m望远镜次镜支撑结构设计[J]. 光学 精密工程, 2017, 25(10): 2614-2619.